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Abstract— Depth estimation is critical for any robotic system.
In the past years, the estimation of depth from monocular
images has shown great improvement. However, in the un-
derwater environment results are still lagging behind due to
appearance changes caused by the medium. So far little effort
has been invested in overcoming this. Moreover, underwater,
there are more limitations to using high-resolution depth
sensors, which is a serious obstacle to generating ground truth.
So far unsupervised methods that tried to solve this have
achieved limited success as they relied on domain transfer
from a dataset in the air. We suggest network training using
subsequent frames, self-supervised by a reprojection loss, as
was demonstrated successfully above water. We propose several
additions to the self-supervised framework to cope with the
underwater environment and achieve state-of-the-art results on
a challenging forward-looking underwater dataset.

I. INTRODUCTION

There is a wide range of target applications for depth
estimation, from obstacle detection to object measurement
and from 3D reconstruction to image enhancement. Under-
water depth estimation (note that here depth refers to the
object range, and not to the depth underwater) is important
for Autonomous Underwater Vehicles (AUVs) [15] (Fig. 1),
localization and mapping, motion planning, and image de-
hazing [6]. As such inferring depth from vision systems
has been widely investigated in the last years. There is a
range of sensors and imaging setups that can provide depth,
such as stereo, multiple-view, and time-of-flight (ToF) [11],
[12], [23]. Monocular depth estimation is different from other
vision systems in the sense that it uses a single RGB image
with no special setup or hardware, and as such has many
advantages. Because of mechanical design considerations,
in many AUVs, it is difficult to place a stereo setup with
a baseline that is wide enough, so monocular depth there
is particularly attractive and can be combined with other
sensors (e.g., Sonars) to set the scale.

Monocular depth methods can be trained either supervised
or self-supervised. Naturally, supervised methods achieve
higher accuracy, however, rely on having a substantial dataset
with pairs of images and their ground-truth depth. This is
very difficult to achieve underwater as traditional multiple-
view methods struggle with appearance changes and are
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Fig. 1: The ALICE autonomous underwater vehicle [15]
facing obstacles. Monocular depth maps can aid obstacle
avoidance and decision-making.

less stable. Additionally, optical properties of water [2]
change temporally and spatially, significantly changing scene
appearance. Thus, for training supervised methods, a ground-
truth dataset is needed for every environment, which is very
laborious. Therefore, we chose to develop a self-supervised
method, that requires only a set of consecutive frames for
training.

When testing state-of-the-art monocular depth estimation
underwater, new problems arise. Handling underwater scenes
requires adding more constraints and using priors. Under-
standing the physical characteristics of underwater images
can assist us in revealing new cues and using them for
extracting depth cues from the images.

We improve self-supervised underwater depth estimation
with the following contributions: 1) Examining how the re-
projection loss changes underwater, 2) Handling background
areas, 3) Adding a photometric prior, 4) Data augmentation
specific for underwater. We use the FLSea dataset [27] for
training and validation.

II. RELATED WORK

A. Supervised Monocular Depth Estimation

In the supervised monocular depth task a deep network is
trained to infer depth from an RGB image using a dataset of
paired images with their ground-truth (GT) depth [7], [22].
Reference ground truth can be achieved from a depth sensor
or can be generated by classic computer vision methods
such as structure from motion (SFM) and stereo. Li et.
al [20] suggest collecting the training data by applying
SFM on multi-view internet photo collections. Their network
architecture is based on an hourglass network structure with
suitable loss functions for fine details reconstruction in the
depth map. A newer method [3], [28] uses transformers to
improve performance.



Fig. 2: Example results on two underwater scenes from the FLSea dataset [27]. a) Input scene, b) Ground truth, c) Result
of Diffnet [33] and d) our estimated depth map. The magenta rectangle marks the background area where our method
significantly improves the results, and black rectangles mark foreground objects where our method improved estimation.

B. Self-Supervised Monocular Depth Estimation

To overcome the hurdle of ground-truth data collection, it
was suggested [12], [34] to use sequential frames for self-
supervised training leveraging the fact that they image the
same scene from different poses. The network estimates both
the depth and the motion between frames. The estimated
camera motion between sequential frames constrains the
depth network to predict up-to-scale depth, and the estimated
depth constrains the odometry network to predict relative
camera pose. The loss is the photometric reprojection error
between two subsequent frames using the estimated depth
and motion.

Monodepth2 [12] proposed to overcome occlusion artifacts
by taking the minimum error between the preceding and
following frames. DiffNet [33] is based on monodepth2 [12]
with two major differences. They replace the ResNet [18] en-
coder with high-resolution representations using HRNet [31]
which was argued to perform better and added attention mod-
ules to the decoder. DiffNet [33] is the current SOTA method
on KITTI 2015 stereo dataset [10], the top benchmark for
self-supervised monocular depth and also performed the best
on our underwater images. Therefore, we base our work on
it.

C. Underwater Depth Estimation

Underwater, photometric cues have been used for infer-
ring depth from single images, as in scattering media the
appearance of objects depends on their distance from the
camera. Based on that several priors have been suggested
for simultaneously estimating depth and restoring scene
appearance.

One line of work is based on the dark channel prior
(DCP) [17] and several underwater variants UDCP [5], [8],
and the red channel prior [9]. Some methods use the per-
patch difference between the red channel and the maximum

between the blue and the green as a proxy for distance,
termed the maximum intensity prior (MIP) by Carlevaris-
Bianco et al. [4]. Song et al. [29] suggested the underwa-
ter light attenuation prior (ULAP) that assumes the object
distance is linearly related to the difference between the
red channel and the maximum blue-green. The blurriness
prior [25] leverages the fact that images become blurrier with
distance. Peng and Cosman [24] combined this prior with
MIP and suggested the image blurring and light absorption
(IBLA) prior. Bekerman et al. [2] showed that improving the
estimation of the scene’s optical properties improves depth
estimation.

There have been also attempts at unsupervised learning-
based underwater depth estimation. UW-Net [14] uses gener-
ative adversarial training by learning the mapping functions
between unpaired RGB-D terrestrial images and arbitrary
underwater images. UW-GAN [16] also used a GAN to
generate depth, using supervision from a synthetic under-
water dataset (no code released for comparison). These are
supervised methods and none uses geometric cues between
subsequent frames for self-supervision as we do. As we
show, self-supervision significantly improves the results.

III. SCIENTIFIC BACKGROUND

A. Reprojection Loss

The reprojection loss is the key self-supervision loss.
It uses two sequential frames [It−1, It], where t is the
time index, together with the estimated extrinsic rotation,
translation, and D̂t, the estimated depth of frame It. These
are used to compute the coordinates p̂t−1 in It−1 that are
the projection of the coordinates pt in It−1 [34]:

p̂t−1 ∼ KT̂t→t−1D̂t(pt)K
−1pt . (1)

Here T̂t→t−1 is the inverse transform calculated from the
extrinsic parameters and K is the intrinsic camera matrix,



known from calibration. Then each pixel in the reprojected
image Ît(pt) is populated with values of It−1(p̂t−1).

Based on color constancy the reprojection Ît is supposed
to be similar to the original frame It. Following [12], often
the re-projection loss is a combination of two similarity
measures, pixel level loss L1 and single scale structural
similarity (SSIM) [32] which compares the image’s local
structural information by using a sliding window to compare
small regions of the two images:

Lreproj = αL1(It, Ît) + (1− α)SSIM(It, Ît) , (2)

weighted by α, commonly set to = 0.15 [12].

B. Underwater Photometry

As described in [2], the image formation model of a scene
pixel x in a participating medium such as underwater is
composed of two additive components:

I(x) = J(x)t(x) +A(1− t(x)) , t = e−χd . (3)

The scene radiance J is attenuated by the medium. The
medium transmission t is exponential in the scene depth
d and χ, the medium’s attenuation coefficient. Backscatter
A(1− t) is an additive component that stems from scattering
along the line of sight, where A is the global light in the
scene.

It is important to note that χ is wavelength dependant,
i.e., each color channel attenuates differently with distance
from the camera. In most water types the attenuation of
red and near-infrared portions in water is much higher
than the shorter visible wavelengths [26]. Hence, in un-
derwater scenes, the red channel decreases faster with the
distance. Based on this observation the ULAP prior was
suggested [29]. It is calculated as the difference between
the maximum value of B and G, the blue and green color
channels, and the value of R, the red color channel

u = max(B,G)−R . (4)

According to [29] the ULAP depth prior u is supposed to
be linearly related to the scene depth.

IV. UNDERWATER SELF-SUPERVISED MONOCULAR
DEPTH ESTIMATION FRAMEWORK

A. Reprojection Loss Underwater

Following (3) the medium affects the acquired underwa-
ter images as a function of object depth. Hence, camera
movement underwater might lead to a significant difference
between images captured subsequently, questioning the va-
lidity of the reprojection loss (2) in this case. One solution
to this is to insert the photometric model (3) into the loss
function (2). This would require the estimation of additional
parameters χ and A and would add complexity. Before doing
that, we conducted an experiment to examine the influence
of the medium on the reprojection loss, as a function of inter-
frame camera motion to check whether in nearby frames the
influence of the medium on the loss can be neglected.

Fig. 3 summarizes this analysis in comparison to a similar
analysis on the KITTI dataset. The reprojection loss between

Fig. 3: Reprojection loss error as a function of frame gap in
KITTI and an FLSea subset (Horse Canyon). When the gap
between frames increases, the error increases as well. This
happens in both datasets but is more prominent underwater
due to the effect of the medium. In nearby frames, the
underwater loss is only slightly larger than the outdoor error
in KITTI.

Fig. 4: Reprojection loss error as a function of α.

subsequent frames in our test set is calculated using the
predicted depth and camera poses. We repeat the same
calculation for an increasing gap between the frames. We see
that in nearby subsequent frames, the underwater loss is only
slightly larger than the outdoor error in KITTI. As expected,
the error increases as the distance between subsequent frames
increases. This points to the importance of high frame-
rate imaging when acquiring training sets underwater, and
confirms our assumption that in our dataset the original loss
can be used.

The loss (2) that is commonly used combines L1 which is
a pixel-wise comparison, with SSIM, which is a more general
image quality measure with a weight of α = 0.15, i.e.,
SSIM receives a much larger weight. SSIM should be more
robust to illumination changes underwater and therefore we
hypothesize that the ideal α value underwater should be
lower. To test that, we conducted an experiment in which we
trained the baseline method with a range of α values. The
results are summarized in Fig. 4. We see that both α = 0
and α = 0.1 result in lower errors, with a small preference
for α = 0.1, which we choose to use in our experiments.



Fig. 5: DiffNet depth prediction results on KITTI. There is
no ground truth for sky regions so the error there is not
measured. We see that the depth of the sky in the image
(green rectangle) is mistakenly predicted to be closer than
the trees below it.

B. Inferring Range in Areas Without Objects

The re-projection loss (2) minimizes the misalignment of
details in the image. This creates an issue when estimating
image areas that have no objects (e.g., sky, water back-
ground), since in textureless areas any depth results in a low
reprojection loss. In KITTI, there is no ground truth available
for the sky as the measurements are LIDAR measurements
that only reflect from nearby objects. However, when ob-
serving the results qualitatively, it is noticeable that some
areas in the sky receive erroneous nearby ranges (see Fig. 5).
When using depth inference to guide driving vehicles this is
probably not an issue as the vehicles drive on the ground
level and values in areas vertically above the car height are
less relevant.

However, underwater, vehicles regularly move vertically
in a 3D space and require accurate range estimation also
in areas that are vertically above them. If an object-less
background area is mistakenly assigned a nearby value, it
might affect the vehicle motion planning and the vehicle
will attempt to bypass it without any reason. Moreover, this
issue becomes more severe in underwater scenes, as ambient
illumination is non-uniform and the background appearance
can change between frames, increasing the reprojection error
(e.g., the background noise in Fig. 6b). Thus, this issue
becomes critical underwater and we attempt to overcome it.

We want the loss to focus on the visible objects, such that
it does not try to explain illumination changes in the object-
less areas. For that, we propose the Local Variation Weight
(LVW) mask σk. We calculate a local variation map over the
image (5), which extracts interest areas in the image

σk = E(x2
k)− E(xk)

2 , (5)

where E is the expectation operator and xk is an image region
of size k = 25. This map is normalized between 0 and 1:

σ̂k =
σk −min(σk)

max(σk)−min(σk)
. (6)

and is used as weights on the original re-projection loss (2)
to yield the final re-projection loss L̂reproj.

L̂reproj = Lreproj · σ̂k . (7)

A similar mask was used in [30] for image segmentation
in noisy and textured environments. Fig. 6 demonstrates the
effect of LVW on two scenes. The LVW mask reduces some
of the effects of flickering, backscatter, and changing the
appearance of the rocks due to the combination of different
camera orientations and nonuniform illumination.

Fig. 6: The effect of local variation map on the reprojection
loss. a) An underwater scene. b) The reprojection loss (2)
calculated between consecutive frames. (c) The normalized
LVW map (6). d) The final loss (7) after multiplication with
the normalized LVW. In the original loss (b) reflections and
non-uniform illumination introduce errors. The normalized
LVW filters out this noise and leaves the real errors of the
projection miss-alignment.

Fig. 7: Correlation of the depth prior ULAP values versus
ground truth depth. Pearson Coefficient between ground truth
to ULAP equals 0.46.

C. Underwater Light Attenuation Prior (ULAP)

As discussed in Sec. II-C, underwater, photometric cues
can aid depth estimation. Here we add the ULAP prior as
guidance for the estimation. First, we examine the validity
of the prior. In Fig. 7 we show the correlation between both
the ground truth depth with the ULAP (4) calculated on our
test set images. The correlation is 0.46, which shows some
relation but means ULAP by itself cannot be used for depth
estimation. Using this insight, we encourage the correlation
between the ULAP prior u and our depth estimation d by
penalizing scores that are smaller than 1:

Lcorr = 1−
∑

(d− d̄) · (u− ū)√∑
(d− d̄)2 ·

∑
(u− ū)2

, (8)

where d̄ is the mean depth over the image, and ū is the mean
of u. The weight for this loss was empirically set to 1e−5.

D. Underwater Data Augmentation

Compared to above-water haze-free images, in which the
sky is usually uniformly illuminated, the underwater medium
introduces light scattering which is changed by distance from
the camera, camera orientation, and the direction of the sun.
This could greatly affect unsupervised depth estimation since
we do not expect to see projection errors in fully aligned
regions. To generalize the network to perform well under



Fig. 8: An example underwater image after homomorphic
filtering with different cutoff frequency D0 values (9). D0=0
is the original image, higher cutoff frequencies eliminate low
frequencies from the image and emphasize high frequencies.

different illuminations, we use dedicated data augmentation
in training, using homomorphic filtering.

Homomorphic filtering [1] is an image processing filter
that is used for image enhancement, denoising [13] and
non-uniform image illumination correction [19]. The homo-
morphic filter serves as a high-pass filter, reducing low-
frequency variations that stem from illumination changes,
with a controllable cutoff frequency. We use it to augment
the input training images with a randomly parameterized
homomorphic filter. Each input image goes through a ho-
momorphic filter with a random uniformly distributed cutoff
frequency F0 with values that range between 0 to 250.
Setting F0 = 0 yields the original image. This results in
images with more homogeneous illumination (see Fig. 8)
and aids training.

The homomorphic filter H is a Butterworth high pass
filter (9), initialized with a cutoff frequency F0

H(z, w) =

{
1 +

[
F0

F (z, w)

]2n}−1

, (9)

where F (z, w) is the 2D euclidean distance from the point
(z,w) to the center of the frequency space frame. We set n,
the order of the filter, to be 2, which generates a moderate
transition around the cutoff frequency. To apply the filter
the RGB image is converted to YUV (Y– luminance; UV–
chrominance) color space (y, u, v) = RGB2Y UV (I) and
the high pass filter is applied in the Fourier space on the log
of the y color channel of the image:

ŷ = expF−1(HY ) , Y = F(log y) . (10)

The filtered RGB image Î is reconstructed from (ŷ, u, v)

Î = Y UV 2RGB(ŷ, u, v) . (11)

V. EXPERIMENT DETAILS

A. Training and Testing

We use the FLSea dataset [27]. It contains 4 scenes: U
Canyon, Horse Canyon, Tiny Canyon, and Flatiron, consist-
ing of 2901, 2444, 1082, and 2801 frames respectively. All

Fig. 9: Examples of background masking of two underwater
images taken from Tiny Canyon and flatiron.

scenes were acquired in the same region in the Mediterranean
Sea. Ground truth depth and camera intrinsics were generated
using SFM (with the Agisoft software), and are known to
contain some errors. We split each one of the scenes into
train (2751, 2651, 932, and 2444 respectively), evaluation
(50), and test (last 150 frames of each of the scenes) sets.
Horse Canyon was used for training but excluded from the
test set due to the apparent low quality of the ground truth.
We trained the network using pre-trained weights on KITTI
as a starting point, as this yielded better results than training
from scratch.

B. Background Error Estimation

In most datasets, including ours, there is no ground truth
for background areas, as depth is measured only on objects.
Thus, performance is not evaluated on background regions.
Due to its importance in our case (Sec. IV-B), we specifically
added a measure for the background error. The disparity in
background areas is expected to be 0, hence, we suggest an
error measurement that penalizes pixels in the background
that are greater than zero. Our motivation in this error
calculation is to give the lowest error to pixels with the
lowest disparity S estimation or alternatively farthest depth
estimation

BGerror =
1

m

m∑
i=1

Sx∈bg , (12)

where m is the number of test images and S is the predicted
disparity map from the test set. For extracting the open
water background bg, we use the method described in [21],
originally targeted for sky detection (see examples in Fig. 9).

VI. RESULTS

Table I summarizes the results and the ablation study. The
results are reported using the evaluation metrics described
in [7]. Since we could achieve good background masking
only on Tiny Canyon, we calculate the background error
only on this scene. Our method significantly improves the
baseline DiffNet in all measures except for δ < 1.25 and
δ < 1.252. These measures indicate the number of pixels
with low errors. This means that our method is less accurate
in fine-depth estimation but more accurate in the global
depth context, which is manifested in more accurate borders
between objects and correct depth decisions of objects with
regard to other objects in the scene. Our method is also
significantly better in the background error estimation in
more than 30%. We see that even the baseline results of
the above water method are much better than the dedicated
UWNET [14]. Note that [14] is trained on an in-air synthetic



TABLE I: An ablation analysis on the FLSea dataset. All methods perform better than the baseline. Augmentation contributes
mostly to background error reduction. Measurement reveals significant improvement in background depth estimation.

Lcorr LVW Augmentation α AbsRel SqRel RMSE RMSElog δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ BGerror
U W - N E T - 0.527 1.765 1.725 1.961 0.337 0.565 0.699 3.9247

B A S E L I N E 0.15 0.203 1.955 1.546 0.245 0.768 0.923 0.966 1.381
0.1 0.186 1.828 1.295 0.222 0.793 0.935 0.97 1.396

✓ 0.1 0.162 0.245 0.661 0.209 0.78 0.934 0.974 1.213
✓ 0.1 0.158 0.18 0.644 0.218 0.768 0.929 0.963 1.795

✓ 0.1 0.18 0.366 0.775 0.221 0.751 0.924 0.97 1.372
✓ ✓ 0.1 0.165 0.212 0.7 0.227 0.774 0.92 0.958 1.714

✓ ✓ 0.1 0.176 0.399 0.859 0.213 0.771 0.928 0.974 1.098
✓ ✓ 0.1 0.156 0.146 0.589 0.21 0.775 0.927 0.972 0.79
✓ ✓ ✓ 0.1 0.158 0.149 0.581 0.208 0.778 0.924 0.969 0.783

Fig. 10: Example results on three underwater scenes from the FLSea dataset [27]. a) Input scene, b) Ground truth, c) UW-
Net result, d) Result of Diffnet and e) our estimated depth map. The magenta rectangles mark the background area where
our method significantly improves the results, and black rectangles mark foreground objects where our method improved
estimation.

dataset together with random internet underwater images,
therefore can not be re-trained with our dataset. The ablation
study shows that using α = 0.1, Lcorr and LVS always
improve results. Augmentation with the homomorphic filter
improves some of the measures and especially the back-
ground error.

VII. DISCUSSION

So far methods for monocular depth estimation underwater
concentrated on leveraging photometric cues in single im-
ages, which is challenging to do in a self-supervised manner.
We are the first to use self-supervision using subsequent
frames, as successfully done above water. We show that
using the standard above-water SOTA methods underwater
results in decent results but has room for improvement as it
is not designed to cope specifically with appearance changes
caused by the medium. We analyze the performance of the
standard reprojection loss and show that it can be used also

underwater given the training set was acquired at a high
frame rate. We point to a problem that exists also above
water in errors in estimating background areas that do not
have ground truth. This was so far ignored above water, but in
the three-dimensional underwater realm it cannot be ignored
and we suggest a weighed loss to mitigate this issue.

Since photometric priors on the single underwater images
contain important information we combine one of them
in the loss. In the future, we plan to investigate how to
further combine the single image information with the self-
supervision obtained from subsequent frames. Lastly, we
plan to incorporate this framework into a complete image
restoration pipeline. Overall, our method significantly im-
proves the SOTA in underwater monocular depth estima-
tion and can substantially aid vision-based navigation and
decision-making in underwater autonomous vehicles.
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